Extrema of a function

Recall: the gradient rector at a point is perpendicular to the level set parsing through that point.

Question: At the point where f attains maximum, what is the gradient of f ?

Local extrema:

At local extrema: $\nabla f=0$.

Rate of change in the x-direction.

$$
f_{x}\left(x_{0}, y_{0}\right)=0 \rightarrow \nabla f=0
$$

Rate of change in the y-direction:

$$
f_{y}\left(x_{0}, y_{0}\right)=0 \text {. }
$$

A critical point is where $\nabla_{f}=0$.

$$
\nabla f\left(x_{0}, y_{0}\right)=0
$$

$$
f^{\prime}(2)=0
$$

Ex:

$$
\begin{aligned}
& f(x, y)=x^{2}+x y+y^{2}+y, \\
& f_{x}=2 x+y \\
& f_{y}=x+2 y+1
\end{aligned}
$$

Solve for critical point:

$$
\left\{\begin{array} { l }
{ 2 x + y = 0 } \\
{ x + 2 y + 1 = 0 }
\end{array} \leadsto \left\{\begin{array}{l}
x=1 / 3 \\
y=-2 / 3
\end{array}\right.\right.
$$

How do we know if $\left(\frac{1}{3},-\frac{2}{3}\right)$ is where f attains local maximum or minimum?

En $\quad f(x, y)=(x-y)(1-x y)$
Find the critical points of f.

